RHIC Vacuum Upgrade

H.C. Hseuh November 8, 2004

Outline

- Layout of Vacuum Systems
- Upgrade in 2001 03'

Increased In-situ Bake Sections

Installed Electron Detectors and Solenoids

• Upgrade in 2004

Installed Anti-Grazing Rings

Cold Bore Improvement

NEG Coated Warm Beam Pipes and Activation

Future Plan / Summary

NEG Coating of Expt. Area Beam Pipes

Summary

Vacuum System Layout Vacuum System Layout Six sextants 40 cold vacuum sections (6.4 km) 12 Long Arcs of ~500m each 24 triplets sections of 20m each 4 at injection areas CCG every 30m

46 warm vacuum sections (1.2 km)

MAGNET CRYOSTAT

DIPOLE MAGNET

 $(\sim 9.5M)$

24 Q3-Q4 insertions

12 DX-D0, 6 IR, ...

COLD BORE BEAMTUBE

CQS MAGNET

Layout of Warm Vacuum Sections – IR + Insertions

Length of Warm Sections from 17 – 34 m

Pumped with ion pumps and titanium sublimation pumps every 10 - 17 m

Linear conductance of 40 - 200 l.m/s for CO ($\Phi = 7 - 12cm$)

$$P_{AVG} / P_{Pump/gauge}$$
: < 8 (H₂) - 28 (CO) for Φ = 7cm (IR region) < 2.6 (H₂) - 7 (CO) for Φ = 12cm (Q3 - Q4)

Most sections were In-situ baked up to 250°C x > 48 hours \Rightarrow low 10⁻¹¹ Torr

7 sections (mostly @ RF regions) were not baked – low 10⁻⁹ - 10⁻¹⁰ Torr

Upgrade in 2001 – 03'

Increased In-Situ Baked Warm Sections from ~ 35% to ~ 85%

Comparing Pressure Rise (ΔP) of **Baked** vs **Not Baked**

△P during #5350 (last ramps) as example

IR4 > IR12 > IR10 > IR2 > IR6 > IR8

Red: baked

Blue: partially baked

Black: not baked

$$bi8 > bo2 > bi4 > bi12 > bo10 > bo11 > bi1 > bo3 > bo6 > bo7 > bi5 > bi9$$

General Trend:

Lower $P_0 \Rightarrow lower \Delta P_{beam}$

Baked better than partially baked, and better than not baked

Various beam components were partially baked

DCCT-60°C, WCM & Schottky-100°C, IPM & stochastic cooling <120°C.....

Need more thorough bake, and at higher T and longer period

RF cavities, polarimeters, jet... are not bakeable

Upgrade in 2001 – 03'

Electron Detectors

to study I_e, E_e ...

Install 12 custom units in 2002

Large electrodes with $A = 75 \text{cm}^2$, ~70°

Well shielded from beam image current

12cm ID port

Transmission efficiency of $6 \pm 2\%$

Detector Configuration:

A: RF shield, ~ 20% transparency

G1: retarding electrode (< - 1kV)

G2: anode grid (< 1 kV)

D: electron collector plate

Solenoids

To confine the electrons on a spiral orbit near the chamber wall

- Installed ~ 16 x 4 m in 2002
- 1.2 kW PS for every 4m
- Most at 12cm Φ Q3 Q4 regions and bracketing electron detectors
- PVC or Kapton insulated solenoids
 - # 10 AWG, 212 turns/m
 - 2.7 Gauss/Amp (< 60 gauss)
- New solenoids at Phobos and Brahms in 2004 (~ 6m from IP)

Effectiveness of Solenoid in Reducing ΔP and e^-

Loralie Smart, Run-03 data

Pressure rise was reduced by x 4 with 5 gauss x 24m solenoid field

e⁻ signal was reduced by x 2 with 65 gauss solenoid field 20cm away from ED

Effect of SL is not dramatic!

Anti-Grazing Rings

To study the beam halo induced gas desorption at grazing angle (no rings) at normal incidence (with rings)

PR-STAB, <u>7</u>, 093201 (2004).

Thieberger, et. al,

(a potential remedy for halo scrapping?)

Installed at two 12cm Φ "empty" sections 5 rings in each 22m section

11cm Φ @ 39.4m from IP 10cm Φ @ 44.6m, 48.0m, 53.8m and 59.0m

Use warm dipoles @ ~53.8m to kick the beam

Beam induced desorption yields can be estimated from $\int \Delta P * S dt$ and compared with 04' studies

Possible comparison among the "empty" sections

Section	Anti-Graz	<u>NEG</u>	Beam direction
YO5:	with rings		outgoing
BI5:	with rings	with NEG	incoming
BO6:			outgoing
BO7		with NEG	incoming
YO8		with NEG	incoming

Cold Bore Pressure Rise

@ #5350 (1.5e11 x 110 bunches)

Observed large ΔP at many blue arcs and triplets

P_{beam} / P_o up to 10³

No clear patterns vs. locations in the arcs No confirmed ΔT (resolution to ~ 0.01°K)

CCG connected to 4.5° K by $1^{\circ}\Phi \times 1.5m$ conduit (C = ~ 1 l/s)

Estimated gas density at C-B from CCG

Assume the gas flux q₁ and q₂ reach equilibrium

$$q_1 = \rho_1 V_1 \approx \rho_2 V_2 = q_2$$
 $\rho_1 T_1^{1/2} \approx \rho_2 T_2^{1/2}$
 $\rho_1 \approx 8.2 \times \rho_2$
 $\rho_1 I P_2 \sim 8.2 \text{ for CO} \qquad (\rho_2 = P_2)$
 $\rho_1 I P_2 \sim 18 \text{ for H}_2 \qquad (\rho_2 = 2.2 \times P_2)$

Cold Bore Improvement for 05 Run

```
C-B were pumped down to ~1x10<sup>-3</sup> Torr in yr 2000

Most at < 5x10<sup>-3</sup> Torr after warm up to 80K (no He found) ⇒ H<sub>2</sub>

< 1x10<sup>-1</sup> Torr after warm up to R.T.

No active pumping of cold bore during shutdowns
```

No clear correlation between P_o (80K or R.T.) and ΔP @ #5350

Improvement in 04 shut down

Reduce P_o to < $1x10^{-2}$ Torr before cool down

(1x10⁻² Torr at R.T. ≈ one monolayer (ML) after cool down)

Pump down 6 triplets and 5 arcs ($\sim 25\%$) to $< 10^{-3}$ Torr

Pressure will creep back to $\sim 1 \times 10^{-2}$ Torr after a few days

Pump one arc and one triplet after cool down to 80K

to below $1x10^{-7}$ Torr (to reduce H_2)

Compare ΔP vs P_o (RT or 80K) during 05 run

Reduce H₂ migration from warm bore to cold bore

Q (H_2) 1x10⁻⁹ Torr x 500 l/s x 7 months

- = ~ 10 Torr.l
- = One ML in Arcs.
- = 10 ML in Triplets

Faster logging of C-B CCG and cryo Temp

Upgrade in 2004

NEG Coating of Warm Beam Pipes

to reduce SEY, Electron Stimulated Desorption (ESD) and Provide Linear Pumping

⇒ Cure for Warm Pressure Rise?

NEG Coating (Zr₃₀Ti₃₀V₄₀ alloy) Developed at CERN Coated by vendor SAES Getters (with license from CERN) Installed 250m in 03' and 04' shutdowns at 12 cm Φ insertion regions Will install 250m in 05' shutdown

SEY: SS > 2.0 Be ~ 2.8 NEG ~ 1.7 as received NEG ≤ 1.2 after activation ESD: SS: $10^{-2} - 10^{-1}$ NFG ~10⁻² before activation **NFG** ~10⁻⁴ after activation **Pumping Speed:** IP+TSP $\sim 200 l.m/s (12cm \Phi)$ $> 10^2 l/s/m$ NEG

Secondary electron yield as a function of the primary electron energy for a Ti-Zr-V coating as received and after **2 hours** heating at 120, 160, 200, 250, and 300 °C

(P. Chiggiato, et. al., CERN)

NEG Activation

with minimum gas adsorption

In-Situ Bake

Bake sections up to 250 C for 3 - 7 days Pressure up to 1×10^{-3} Torr initially

NEG Activation

Maintain NEG pipes at ~ 100°C during bake to avoid saturation from desorbed gas

250 C x 1 hr at the end of bake cycle to activate pressure up to 10⁻⁴ Torr during activation

Minimize active gas pumped during activation!

Lifetime capacity of 0.01 Torr.l/cm² **

S = 5 l/s.cm^2 for active gases (CO, H₂O...)

 $P_m = 2e-4$ Torr for BO2 (with ~1% active gases)

 $Q = \int S \times P dt \times 1\%$

= ~ 0.01 Torr.l/cm² for BO2 (worst case)

**1 μm thick NEG coating = 5e+18 atoms/cm²
has limited capacity for active gas
lifetime of ~ 10 activation cycles

** NEG Poisoning at ~ 20% atoms = 0.01 Torr.l/cm²

H.C. Hseuh

Future Plan / Summary

NEG Coating of Experimental Beam Pipes to Reduce SEY ($\eta_{Be} \sim 2.8$)

Brahms, Phenix & Star: 7cm Φ x 1mm wall x 1.5m Be, brazed to Al or SS

Phobos: $7cm \Phi x 1mm x 4m x 3$ all Be with Be flanges and bolts

Big effort to activate and re-activate NEG at Phenix and Phobos Can't activate the NEG for Star and Brahms (Al extension!)

NEG Coating by

SAES Getters - No!

Be, Length, Residual radiation

CERN – Yes!

Up to 7m, Risk of Shipping

BNL - R& D started

Preferred by experimenters

Expt.	<u>L(m)</u>	Be L(m)	<u>Extension</u>	Bake T (°C)
Brahms	7.1	1.5	Al	150
Phenix	5.2	1.5	SS	200
Phobos	12	3 x 4		200
Star	8.2	1.5	Al	100

BNL NEG Coating Development for Expt Beam Pipes with Horizontal Cathode base on SNS experience

Magnetron sputtering plasma

SNS Ti cathode wrapped with 5mm Zr and V ribbons
vs. vertical twisted wires and external solenoid at SAES, CERN
(cost, building, mounting, schedule, safety...)

1m long SS pipe coated, activated and reached low 10-11 Torr
Assembly of 4cm Φ x 6m cathode for 7cm Φ x 4m pipes
Difficulty in cathode mounting and alignment to obtain stable and uniform
discharge ⇒ smaller cathode, smaller and shorter magnets...

NEG Coating Set Up for 4m x 7cm Φ pipes

Future Plan / Summary BNL NEG Coating Composition

CERN spec: $Zr_{30}Ti_{30}V_{40} \pm 30\%$ SAES sample: $Zr_{25}Ti_{28}V_{47}$ by RBS BNL samples: $Zr_{44}Ti_{16}V_{40}$ by RBS

Sample	Measured by	Zr	Ti	V
SAES	EDS	38	24	38
SAES	AES	44	27	29
SAES	RBS	25	28	47
BNL	EDS	60	15	25
BNL	AES	5 6	19	24
BNL	RBS	44	16	40

Summary

- Pressure Rise at any section(s) becomes bottleneck for physics
- No single silver bullet: In-situ Baking, Solenoids,...
 - Lower P_o help reduce $\Delta P \Rightarrow$ need thorough *in-situ* baking
 - Benefit of solenoids is limited!
- NEG coating for warm pressure rise
 - 12cm Φ pipes coated by vendor, install up to 500m by 2005
 - NEG coating of 7cm Φ IR Be pipes: by CERN or BNL R&D
 - IR Pipe Activation?
- Improvement of Cold bore vacuum
 - Pumping to < 10⁻³ Torr before cool down
 - To reduce surface condensate to sub monolayer
 - Reduce H₂ migration from warm to cold